42 research outputs found

    Towards accurate and reproducible predictions for prognostic : an approach combining a RRBF Network and an AutoRegressive Model.

    No full text
    International audienceIn prognostic's field, the lack of knowledge on the behavior of equipments can impede the development of classical dependability analysis, or the building of effective physic-based models. Following that, artificial neural networks (ANNs) appear to be well suited since they can learn from data gathered from equipments. In this paper, an approach combining a Recurrent Radial Basis Function network (RRBF) and an AutoRegressive with eXogenous inputs model (ARX) is proposed in order to perform the prediction step of prognostics: the ARX attempts to correct the error of predictions of the RRBF. Moreover, since performances of an ANN can be closely related to initial parameterization of the network, a criterion is defined to quantify the reproducibility of predictions and thereby a priori estimate the usefulness of neural network structure. The whole aims at improving the prediction step of prognostics, which is critical with respects to real applicative conditions

    Contribution à la surveillance des systèmes de production à l'aide des réseaux de neurones dynamiques : Application à la e-maintenance

    No full text
    Alain BOURJAULT : Professeur à l'ENSMM de Besançon, Jean-Marc FAURE : Professeur à l'ISMCM-CESTI de Paris Denis HAMAD : Professeur à Université du Littoral Côte d'Opale, Calais Raphaël LABOURIER : PDG Sté. AVENSY Ingénierie, Besançon Daniel NOYES : Professeur à l'ENI de Tarbes Daniel RACOCEANU : Maître de Conférences à l'Université de Franche-Comté Jean-Pierre THOMESSE : Professeur à l'ENSEM-INPL de Nancy, Noureddine ZERHOUNI : Professeur à l'ENSMM de BesançonThe industrial monitoring methods are divided into two categories: monitoring methods based on the existence of the equipment formal model, and those which not use any equipment formal model. Generally, there are many uncertainties in the formal model and for complex industrial equipment, it is very difficult to obtain a correct mathematical model. This thesis presents an application of the artificial neural networks to the industrial monitoring. We propose a new architecture of Radial Basis Function Networks which exploits the dynamic properties of the locally recurrent architectures for taking into account the input data temporal aspect. Indeed, the consideration of the dynamic aspect requires rather particular neural networks architectures with special training algorithms which are often very complicated. In this sense, we propose an improved version of the k-means algorithm which allows to determine easily the neural network parameters. The validation tests show that at the convergence of the learning algorithm, the neural network is situated in the zone called « good generalization zone ». The neural network was then decomposed into elementary functions easily interpretable in industrial automation languages. The applicative part of this thesis shows that a real-time monitoring treatment is possible thanks to the automation architectures. The neural network loaded in a PLC is completely configurable at distance by the TCP/IP communication protocol. An Internet connection allows then a distant expert to follow the evolution of its equipment, and also to validate the artificial neural network learning.Les méthodes de surveillance industrielle sont divisées en deux catégories : méthodes de surveillance avec modèle formel de l'équipement, et méthodes de surveillance sans modèle de l'équipement. Les modèles mathématiques formels des équipements industriels sont souvent entachés d'incertitudes et surtout difficiles à obtenir. Cette thèse présente l'application des réseaux de neurones artificiels pour la surveillance d'équipements industriels. Nous proposons une architecture de Réseaux à Fonctions de base Radiales qui exploite les propriétés dynamiques des architectures localement récurrentes pour la prise en compte de l'aspect temporel des données d'entrée. En effet, la prise en compte de l'aspect dynamique nécessite des architectures de réseaux de neurones particulières avec des algorithmes d'apprentissage souvent compliqués. Dans cette optique, nous proposons une version améliorée de l'algorithme des k-moyennes qui permet de déterminer aisément les paramètres du réseau de neurones. Des tests de validation montrent qu'à la convergence de l'algorithme d'apprentissage, le réseau de neurones se situe dans la zone appelée « zone de bonne généralisation ». Le réseau de neurones a été ensuite décomposé en fonctions élémentaires facilement interprétables en langage automate. La partie applicative de cette thèse montre qu'un traitement de surveillance en temps réel est possible grâce aux architectures à automates programmables industriels. Le réseau de neurones chargé dans l'automate est entièrement configurable à distance par le protocole de communication TCP/IP. Une connexion Internet permet alors à un expert distant de suivre l'évolution de son équipement et également de valider l'apprentissage du réseau de neurones artificiel

    Combining a recurrent neural network and a PID controller for prognostic purpose.

    No full text
    International audienceIn maintenance field, prognostic is recognized as a key feature as the prediction of the remaining useful life of a system allows avoiding inopportune maintenance spending. Assuming that it can be difficult to provide models for that purpose, artificial neural networks appear to be well suited. In this paper, an approach combining a Recurrent Radial Basis Function network (RRBF) and a proportional integral derivative controller (PID) is proposed in order to improve the accuracy of predictions. The PID controller attempts to correct the error between the real process variable and the neural network predictions. The approach and its performances are illustrated by using two classical prediction benchmarks: the Mackey–Glass chaotic time series and the Box–Jenkins furnace data

    Defining and applying prediction performance metrics on a recurrent NARX time series model.

    No full text
    International audienceNonlinear autoregressive moving average with exogenous inputs (NARMAX) models have been successfully demonstrated for modeling the input-output behavior of many complex systems. This paper deals with the proposition of a scheme to provide time series prediction. The approach is based on a recurrent NARX model obtained by linear combination of a recurrent neural network (RNN) output and the real data output. Some prediction metrics are also proposed to assess the quality of predictions. This metrics enable to compare different prediction schemes and provide an objective way to measure how changes in training or prediction model (Neural network architecture) affect the quality of predictions. Results show that the proposed NARX approach consistently outperforms the prediction obtained by the RNN neural network

    Improving the prediction accuracy of recurrent neural network by a PID controller.

    No full text
    International audienceIn maintenance field, prognostic is recognized as a key feature as the prediction of the remaining useful life of a system which allows avoiding inopportune maintenance spending. Assuming that it can be difficult to provide models for that purpose, artificial neural networks appear to be well suited. In this paper, an approach combining a Recurrent Radial Basis Function network (RRBF) and a proportional integral derivative controller (PID) is proposed in order to improve the accuracy of predictions. The PID controller attempts to correct the error between the real process variable and the neural network predictions

    Features Selection Procedure for Prognostics: An Approach Based on Predictability

    No full text
    International audiencePrognostic aims at estimating the remaining useful life (RUL) of a degrading equipment, i.e at predicting the life time at which a component or a system will be unable to perform a desired function. This task is achieved through essential steps of data acquisition, feature extraction and selection, and prognostic modeling. This paper emphasizes on the selection phase and aims at showing that it should be performed according to the predictability of features: as there is no interest in retaining features that are hard to be predicted. Thereby, predictability is de ned and a feature selection procedure based on this concept is proposed. The e ectiveness of the approach is judged by applying it on a real-world case: through comparison is made in order to show that the better predictable features lead to better RUL estimation

    Improving data-driven prognostics by assessing predictability of features.

    No full text
    International audienceWithin condition based maintenance (CBM), the whole aspect of prognostics is composed of various tasks from multidimensional data to remaining useful life (RUL) of the equipment. Apart from data acquisition phase, data-driven prognostics is achieved in three main steps: features extraction and selection, features prediction, and health-state classification. The main aim of this paper is to propose a way of improving existing data-driven procedure by assessing the predictability of features when selecting them. The underlying idea is that prognostics should take into account the ability of a practitioner (or its models) to perform long term predictions. A predictability measure is thereby defined and applied to temporal predictions during the learning phase, in order to reduce the set of selected features. The proposed methodology is tested on a real data set of bearings to analyze the effectiveness of the scheme. For illustration purpose, an adaptive neuro-fuzzy inference system is used as a prediction model, and classification aspect is met by the well known Fuzzy Cmeans algorithm. Both enable to perform RUL estimation and results appear to be improved by applying the proposed strategy

    Robust, reliable and applicable tool wear monitoring and prognostic : approach based on an Improved-Extreme Learning Machine.

    No full text
    International audienceAlthough efforts in this field are significant around the world, real prognostics systems are still scarce in industry. Indeed, it is hard to provide efficient approaches that are able to handle with the inherent uncertainty of prognostics and nobody is able to a priori ensure that an accurate prognostic model can be built. As for an example of remaining problems, consider datadriven prognostics approaches: how to ensure that a model will be able to face with inputs variation with respect to those ones that have been learned, how to ensure that a learned-model will face with unknown data, how to ensure convergence of algorithms, etc. In other words, robustness, reliability and applicability of a prognostic approach are still open areas. Following that, the aim of this paper is to address these challenges by proposing a new neural network (structure and algorithm) that enhances reliability of RUL estimates while improving applicability of the approach. Robustness, reliability and applicability aspects are first discussed and defined according to literature. On this basis, a new connexionist system is proposed for prognostics: the Improved-Extreme Learning machine (Imp-ELM). This neural network, based on complex activation functions, enables to reduce the influence of human choices and initial parameterization, while improving accuracy of estimates and speeding the learning phase. The whole proposition is illustrated by performing tests on a real industrial case of cutting tools from a Computer Numerical Control (CNC) machine. This is achieved by predicting tool condition (wear) in terms of remaining cuts successfully made. Thorough comparisons with adaptive neuro fuzzy inference system (ANFIS) and existing ELM algorithm are also given. Results show improved robustness, reliability and applicability performances

    Deep Convolutional Variational Autoencoder as a 2D-Visualization Tool for Partial Discharge Source Classification in Hydrogenerators

    Get PDF
    International audienceHydrogenerators are strategic assets for power utilities. Their reliability and availability can lead to significant benefits. For decades, monitoring and diagnosis of hydrogenerators have been at the core of maintenance strategies. A significant part of generator diagnosis relies on Partial Discharge (PD) measurements, because the main cause of hydrogenerator breakdown comes from failure of its high voltage stator, which is a major component of hydrogenerators. A study of all stator failure mechanisms reveals that more than 85 % of them involve the presence of PD activity. PD signal can be detected from the lead of the hydrogenerator while it is running, thus allowing for on-line diagnosis. Hydro-Québec has been collecting more than 33 000 unlabeled PD measurement files over the last decades. Up to now, this diagnostic technique has been quantified based on global PD amplitudes and integrated PD energy irrespective of the source of the PD signal. Several PD sources exist and they all have different relative risk, but in order to recognize the nature of the PD, or its source, the judgement of experts is required. In this paper, we propose a new method based on visual data analysis to build a PD source classifier with a minimum of labeled data. A convolutional variational autoencoder has been used to help experts to visually select the best training data set in order to improve the performances of the PD source classifier

    An evolutionary building algorithm for Deep Neural Networks

    No full text
    International audienc
    corecore